Biomechanical and leaf-climate relationships: a comparison of ferns and seed plants.
نویسندگان
چکیده
PREMISE OF THE STUDY Relationships of leaf size and shape (physiognomy) with climate have been well characterized for woody non-monocotyledonous angiosperms (dicots), allowing the development of models for estimating paleoclimate from fossil leaves. More recently, petiole width of seed plants has been shown to scale closely with leaf mass. By measuring petiole width and leaf area in fossils, leaf mass per area (MA) can be estimated and an approximate leaf life span inferred. However, little is known about these relationships in ferns, a clade with a deep fossil record and with the potential to greatly expand the applicability of these proxies. METHODS We measured the petiole width, MA, and leaf physiognomic characters of 179 fern species from 188 locations across six continents. We applied biomechanical models and assessed the relationship between leaf physiognomy and climate using correlational approaches. KEY RESULTS The scaling relationship between area-normalized petiole width and MA differs between fern fronds and pinnae. The scaling relationship is best modeled as an end-loaded cantilevered beam, which is different from the best-fit biomechanical model for seed plants. Fern leaf physiognomy is not influenced by climatic conditions. CONCLUSIONS The cantilever beam model can be applied to fossil ferns. The lack of sensitivity of leaf physiognomy to climate in ferns argues against their use to reconstruct paleoclimate. Differences in climate sensitivity and biomechanical relationships between ferns and seed plants may be driven by differences in their hydraulic conductivity and/or their differing evolutionary histories of vein architecture and leaf morphology.
منابع مشابه
Population variation of Artemisia sieberi in Iran based on quantitative characters of leaf and seed and their relationships with habitat features
Thirty-four populations of Artemisia sieberi from 10 provinces of Iran were investigated with respect to quantitative characteristics of leaves and seeds. In each habitat, five plants were randomly selected and some branches were harvested for studying leaf characteristics in spring and seed characteristic in autumn. Principle features of climate and soil were studied in each habitat. In order ...
متن کاملAltitudinal Variation in Leaf Nitrogen Concentration on the Eastern Slope of Mount Gongga on the Tibetan Plateau, China
Mount Gongga spans 6500 m in elevation and has intact and continuous vertical vegetation belts, ranging from subtropical evergreen broad-leaved vegetation to an alpine frigid sparse grass and desert zone. Investigating the altitudinal trends in leaf nitrogen (N) on Mount Gongga can increase our understanding of the global biogeography of foliar N. In this study, 460 leaf samples from mosses, fe...
متن کاملExtending the generality of leaf economic design principles in the cycads, an ancient lineage.
Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and ...
متن کاملThe Importance of Fossils in Elucidating Seed Plant Phylogeny and Macroevolution
Doyle, J.A. and Donoghue, M.J., 1987. The importance of fossils in elucidating seed plant phylogeny and macroevolution. Rev. Palaeobot. Palynol., 50: 63--95. In order to gain insights on the controversial question of the value of fossils in understanding phylogeny and macroevolution, we used numerical parsimony methods to analyze a data set amassed for a cladistic study of living and fossil see...
متن کاملMetabolic Adaptation, a Specialized Leaf Organ Structure and Vascular Responses to Diurnal N2 Fixation by Nostoc azollae Sustain the Astonishing Productivity of Azolla Ferns without Nitrogen Fertilizer
Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 101 2 شماره
صفحات -
تاریخ انتشار 2014